图片 7

教育

2015国考行测数学运算:对策分析类问题

18 8月 , 2019  

对策分析类问题在国考[微博]行测中属于高难度的题型,不仅涉及知识面广,且解题思路较为繁杂。为了帮助考生解决这一难点,中公教育[微博]专家将对策分析类问题按考查方向的不同,分为三类:数据分析、统筹问题、推理问题,逐一进行详细讲解。

>>数学运算:对策分析类练习题

一、数据分析

王洋

数据分析类题目通常给出一些限制条件,在这个条件下数据分布有多种不同组合。题目往往是求这些数据组合的极端情况,其本质是讨论数据的离散性。极值一般存在于离散性最差的那种情况。

对策分析类问题在国考(微博)行测中属于高难度的题型,不仅涉及知识面广,且解题思路较为繁杂。为了帮助考生解决这一难点,中公教育(微博)专家将对策分析类问题按考查方向的不同,分为三类:数据分析、统筹问题、推理问题,逐一进行详细讲解。

数据的离散性:(1)常数列(各项相等)离散性最差;(2)若各数不相同,公差为1的等差数列离散性最差。

一、数据分析

【例题1】某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门。假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至少为多少名?

数据分析类题目通常给出一些限制条件,在这个条件下数据分布有多种不同组合。题问往往是求这些数据组合的极端情况,其本质是讨论数据的离散性。极值一般存在于离散性最差的那种情况。

A.10B.11C.12D.13

数据的离散性:(1)常数列(各项相等)离散性最差;(2)若各数不相同,公差为1的等差数列离散性最差。

中公解析:要使分得毕业生人数最多的行政部门人数最少,则其余部门人数尽可能多,即各部门人数尽量接近(可以相等)。从人数最少的选项开始验证,当行政部门有10人时,其余各部门共有65-10=55人,平均每部门人数超过9人,即至少有1个部门人数超过9人,与行政部门人数最多的题干条件不符。若行政部门有11人,其余部门总人数为54人,每个部门可以是9人,满足题意,选B。

【例题1】100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样。那么,参加人数第四多的活动最多有几人参加?

【例题2】10个箱子总重100公斤,且重量排在前三位的箱子总重不超过重量排在后三位的箱子总重的1.5倍。问最重的箱子重量最多是多少公斤?

A.22B.21C.24D.23

A。图片 1B。图片 2C.20D.25

中公解析:把这7项活动分为2组,{1-4名}、{5-7名}。要让第4名得分最多,则{5-7名}尽量少,最少为1+2+3=6人,{1-4名}最多有100-6=94人。94÷4=23.5,当前四名的活动有25、24、23、22人参加时,第四多的活动人数最多为22人。

中公解析:要使最重的箱子重量尽可能大,其余箱子重量应尽可能小,最极端情况为其余九个箱子重量都相等。设排在后九位的箱子的重量均为x,可知排在第一位的箱子的重量为1.5×3x-2x=2.5x。因此9x+2.5x=100,解得x=图片 3,最重的箱子的重量为2.5×图片 4=图片 5

解题时,可根据题干条件对数据分组,在分组后讨论该组数据离散性,来确定给定条件下不同数据组合的极端情况。随着命题的发展,现阶段数据分析类题目有了若干的变形,使得数据分组更复杂,单组数据离散性最差的情况也不再局限于简单的等差数列。

综上所述,数据分析类题目的原则可概括为:组间离散性尽可能大,组内离散性尽可能小,优先考察常数列,各项相异则考虑等差数列。

【例题2】为增强职工的锻炼意识,某单位举行了踢毽子比赛,比赛时长为1分钟,参加比赛的职工平均每人踢了76个。已知每人至少踢了70个,并且其中有一人踢了88个,如果不把该职工计算在内,那么平均每人踢了74个。则踢得最快的职工最多踢了多少个?

二、统筹问题

A.88B.90C.92D.94

统筹问题研究的是怎样安排使总用时最短,或总效率最高。历年国考行测中涉及的统筹问题可分为以下几类:黑夜过桥问题、排队问题、任务分配问题、物资集中问题、货物装卸问题。

图片 6

1.过桥问题

其余人与踢了88个的这个人的人数比为6∶1,共有7个人踢毽子。则其余人共踢了74×6=444个。把这6个人分为{踢最多的人}和{其余5个人}两组。{其余5个人}最少为5×70=350个,则{踢最多的人}最多踢了444-350=94个,选D。

过桥问题一般是多个人或者多个动物需要过河,由于过河时间不同,需要进行合理的安排,使得最终过河时间最短。这个问题有两个原则:(1)尽量让时间相近的两个人一起过桥;(2)让对岸过桥时间最短的人返回。

综上所述,数据分析类题目的原则可概括为:组间离散性尽可能大,组内离散性尽可能小,优先考察常数列,各项相异则考虑等差数列。

【例题1】毛毛骑在牛背上过河,他共有甲、乙、丙、丁4头牛,甲过河要20分钟,乙过河要30分钟,丙过河要40分钟,丁过河要50分钟。毛毛每次只能赶2头牛过河,要把4头牛都赶到对岸去,最少要多少分钟?

二、统筹问题

A.190B.170C.180D.160

统筹问题研究的是怎样安排使总用时最短,或总效率最高。历年国考行测中涉及的统筹问题可分为以下几类:黑夜过桥问题、排队问题、任务分配问题、物资集中问题、货物装卸问题。

中公解析:甲乙先过河,甲返回,用时30+20=50分钟。丙丁过河,乙返回,用时50+30=80分钟。甲乙过河,用时30分钟。最少要50+80+30=160分钟。

1.过桥问题

2.排队问题

过桥问题一般是多个人或者多个动物需要过河,由于过河时间不同,需要进行合理的安排,使得最终过河时间最短。这个问题有两个原则:(1)尽量让时间相近的两个人一起过桥;(2)让对岸过桥时间最短的人返回。

在这类问题中,通常有若干人排队做某事,要求合理安排顺序,使这几个人排队等候和完成事情的总时间最少。

【例题1】毛毛骑在牛背上过河,他共有甲、乙、丙、丁4头牛,甲过河要20分钟,乙过河要30分钟,丙过河要40分钟,丁过河要50分钟。毛毛每次只能赶2头牛过河,要把4头牛都赶到对岸去,最少要多少分钟?

【例题2】A、B、C、D四人同时去某单位和总经理洽谈业务,A谈完要18分钟,B谈完要12分钟,C谈完要25分钟,D谈完要6分钟。如果使四人留在这个单位的时间总和最少,那么这个时间是多少分钟?

A.190B.170C.180D.160

A.91分钟B.108分钟C.111分钟D.121分钟

中公解析:甲乙先过河,甲返回,用时30+20=50分钟。丙丁过河,乙返回,用时50+30=80分钟。甲乙过河,用时30分钟。最少要50+80+30=160分钟。

中公解析:时间越短越靠前,因此谈话顺序为DBAC,停留时间为6×4+12×3+18×2+25=121分钟。

2.排队问题

3.任务分配问题

在这类问题中,通常有若干人排队做某事,要求合理安排顺序,使这几个人排队等候和完成事情的总时间最少。

在分配任务时要做到人尽其用,因此让“相对效率”高的人去做他擅长的事才能确保整体效率是最高的。这类问题有诸多变形,分配原则来自对该问题涉及的核心公式的分析。

【例题2】A、B、C、D四人同时去某单位和总经理洽谈业务,A谈完要18分钟,B谈完要12分钟,C谈完要25分钟,D谈完要6分钟。如果使四人留在这个单位的时间总和最少,那么这个时间是多少分钟?

【例题3】一个产品生产线分为A、B、C三段,每个人每小时分别完成10、5、6件,现在总人数为71人,要使得完成的件数最多,问:71人的安排分别是()。

A.91分钟B.108分钟C.111分钟D.121分钟

A.14∶28∶29B.15∶31∶25

中公解析:时间越短越靠前,因此谈话顺序为DBAC,停留时间为6×4+12×3+18×2+25=121分钟。

C.16∶32∶23D.17∶33∶21

3.任务分配问题

中公解析:从中公的命题分析来看,这是一个典型的工作安排问题,首先要明确工作的目标,其次要弄清任务安排的关键点。

在分配任务时要做到人尽其用,因此让“相对效率”高的人去做他擅长的事才能确保整体效率是最高的。这类问题有诸多变形,分配原则来自对该问题涉及的核心公式的分析。

图片 7

【例题3】一个产品生产线分为a、b、c三段,每个人每小时分别完成10、5、6件,现在总人数为71人,要使得完成的件数最多,问:71人的安排分别是()。

4.物资集中问题

A.14∶28∶29B.15∶31∶25

这类问题通常是:在非闭合的路径上(线形、树形等,不包括环形)有多个“点”,每个点之间通过“路”来连通,每个“点”上有一定的“货物”,要求合理安排把货物集中到一个“点”上,使得所需的运费最少。或者有一定人数,要求合理设置一个站点,使得各“点”上的人到站点所走的总路程最短。

C.16∶32∶23D.17∶33∶21


相关文章

发表评论

电子邮件地址不会被公开。 必填项已用*标注

网站地图xml地图